The breakup of a liquid jet with length-to-diameter ratio of 22 surrounded by a coaxial flow of air has been examined by a combination of high-speed photography and phase-Doppler velocimetry. The air-to-liquid momentum and kinetic energy ratios, the Reynolds number of the coaxial water and air jet flows and the exit-plane Weber number have been varied over extensive ranges and the results examined in terms of the breakup length, frequency, droplet size distributions and velocity characteristics. The photographs reveal the deterministic nature of the liquid flow at Reynolds numbers which are sufficient to guarantee turbulent flow, with the formation of a wave-like structure for a short distance followed by the formation of a liquid cluster and subsequent breakup into ligaments and droplets, with the entire process repeated in a periodic manner. Attempts are made to relate the breakup length and the frequency of the process to the air-to-liquid momentum and energy ratios, the exit Weber number and the slip velocity between the two streams at the nozzle exit. The results confirm that the ratio of the frequencies of the wave-like structures and breakup decreased with the slip velocity between the two streams and asymptotically approached a value of around one for values higher than 150 m s-1. The photographs indicate that the droplet sizes in the sprays are due mainly to disintegration of liquid clusters produced after the initial breakup of the liquid jet and the phase Doppler measurements confirm that most of the liquid remained close to the centreline, where the mean diameter reached a maximum and the slip velocity between the droplets and the air flow was low. An atomization model based on the value of the local Weber number on the centreline of the sprays is used to explain the size characteristics of the sprays. The atomization process was affected by the air-to-liquid momentum ratio at the nozzle exit, the annular width of the coaxial atomizer, the liquid-to-air density ratio, the surface tension and the kinematic viscosity and density of the air. The rate of spread of the sprays close to the nozzle reduced with increase of the air and liquid flowrates and was affected by the initial breakup of the liquid jet and the amplitude of the wave-like structure of the liquid jet during breakup rather than by the air flow turbulence.