Broken symmetries and localization lengths in Anderson insulators: Theory and experiment

JL Pichard, M Sanquer, K Slevin, P Debray - Physical review letters, 1990 - APS
JL Pichard, M Sanquer, K Slevin, P Debray
Physical review letters, 1990APS
Extending a random-matrix theory developed earlier, we show that breaking a basic
symmetry in an Anderson insulator (eg, time-reversal symmetry or spin-rotation symmetry)
generically yields a multiplication of the localization length ξ by universal factors. Numerical
calculations and magnetoconductance measurements in the Mott variable-range-hopping
regime confirm that the removal of time-reversal symmetry by a magnetic field yields ξ→ 2ξ
in the absence of spin-orbit scattering, and ξ→ ξ/2 in the presence of spin-orbit coupling.
Abstract
Extending a random-matrix theory developed earlier, we show that breaking a basic symmetry in an Anderson insulator (eg, time-reversal symmetry or spin-rotation symmetry) generically yields a multiplication of the localization length ξ by universal factors. Numerical calculations and magnetoconductance measurements in the Mott variable-range-hopping regime confirm that the removal of time-reversal symmetry by a magnetic field yields ξ→ 2ξ in the absence of spin-orbit scattering, and ξ→ ξ/2 in the presence of spin-orbit coupling.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果