Carbonation of alkali-activated materials: a review

G Lamaa, APC Duarte, RV Silva, J de Brito - Materials, 2023 - mdpi.com
Materials, 2023mdpi.com
This paper presents a literature review on the effects of accelerated carbonation on alkali-
activated materials. It attempts to provide a greater understanding of the influence of CO2
curing on the chemical and physical properties of various types of alkali-activated binders
used in pastes, mortars, and concrete. Several aspects related to changes in chemistry and
mineralogy have been carefully identified and discussed, including depth of CO2 interaction,
sequestration, reactions with calcium-based phases (eg, calcium hydroxide and calcium …
This paper presents a literature review on the effects of accelerated carbonation on alkali-activated materials. It attempts to provide a greater understanding of the influence of CO2 curing on the chemical and physical properties of various types of alkali-activated binders used in pastes, mortars, and concrete. Several aspects related to changes in chemistry and mineralogy have been carefully identified and discussed, including depth of CO2 interaction, sequestration, reactions with calcium-based phases (e.g., calcium hydroxide and calcium silicate hydrates and calcium aluminosilicate hydrates), as well as other aspects related to the chemical composition of alkali-activated materials. Emphasis has also been given to physical alterations such as volumetric changes, density, porosity, and other microstructural properties caused by induced carbonation. Moreover, this paper reviews the influence of the accelerated carbonation curing method on the strength development of alkali-activated materials, which has been awarded little attention considering its potential. This curing technique was found to contribute to the strength development mainly through decalcification of the Ca phases existing in the alkali-activated precursor, leading to the formation of CaCO3, which leads to microstructural densification. Interestingly, this curing method seems to have much to offer in terms of mechanical performance, making it an attractive curing solution that can compensate for the loss in performance caused by less efficient alkali-activated binders replacing Portland cement. Optimising the application of such CO2-based curing methods for each of the potential alkali-activated binders is recommended for future studies for maximum microstructural improvement, and thus mechanical enhancement, to make some of the “low-performing binders” adequate Portland cement substitutes.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果