Porous nanopowders of Cu–Ni were synthesized using cellulose fibres as impregnation media at ambient pressure using combustion based techniques. The synthesized nanopowders were characterized using XRD, BET, SEM, TEM etc. The phase development during the synthesis process was evaluated by performing TGA/DTA experiments. The effect of the amount of precursor on the microstructure and porosity of the nanomaterials was investigated and compared with Cu–Ni synthesized using the Solution Combustion Synthesis (SCS) method. The syntheses of nanopowders proceed via ignition in the reaction media containing metal precursors which is followed by high temperature cellulose combustion. Total pore volume and average pore diameter in case of cellulose assisted synthesized samples were found to be greater as compared to SCS samples.
The Royal Society of Chemistry