Chirality seems to be intimately associated with the growth and stability of self-assembled fibrillar networks and with the most common macroscopic property of these networks, which is the thermoreversible gelation of the solvent. The presence and the relative configurations of stereogenic centers in the structure of a small molecule gelator are generally (but not always) observed to be critical to its ability to form gels. Symmetry considerations of chiral molecular packing provide thermodynamic and kinetic arguments that may explain why chirality favors fiber growth. Additionally, molecular chirality is sometimes expressed at a scale of nanometers or micrometers and gives rise to twisted or coiled fiber structures that are readily observable by microscopic techniques. These chiral fiber morphologies have already found some applications as templates for helical protein crystallization or for the growth of chiral inorganic replicas. The chiroptical properties of assembled chiral molecules, e.g., circular dichroism, allow monitoring of aggregation and may sometimes give insights into molecular packing. But determining chiral molecular arrangements in the fibers remains a challenge and requires the use of multiple techniques.