We present a robotic system designed to provide physical assistance to a person in bed. The system consists of a robotic bed (Autobed) and a mobile manipulator (PR2) that work together. The 3 degree-of-freedom (DoF) robotic bed moves the person’s body and uses a pressure sensing mat to estimate the body’s position. The mobile manipulator positions itself with respect to the bed and compliantly moves a lightweight object with one of its 7-DoF arms. The system optimizes its motions with respect to a task model and a model of the human’s body. The user provides high-level supervision to the system via a web-based interface. We first evaluated the ability of the robotic bed to estimate the location of the head of a person in a supine configuration via a study with 7 able-bodied participants. This estimation was robust to bedding, including a pillow under the person’s head. We then evaluated the ability of the full system to autonomously reach task-relevant poses on a medical mannequin placed in a supine position on the bed. We found that the robotic bed’s motion and perception each improved the overall system’s performance. Our results suggest that this type of multi-robot system could more effectively bring objects to desired locations with respect to the user’s body than a mobile manipulator working alone. This may in turn lead to improved physical assistance for people with disabilities at home and in healthcare facilities, since many assistive tasks involve an object being moved with respect to a person’s body.