A comparative study of the n-γ discrimination done by the digital charge comparison and zero-crossing methods was carried out for a 130 mm in diameter and 130 mm high BC501A liquid scintillator coupled to a 130 mm diameter XP4512B photomultiplier. The high quality of the tested detector was reflected in a photoelectron yield of 2300 ± 100 phe/MeV and excellent n-γ discrimination properties with energy discrimination thresholds corresponding to very low neutron (or electron) energies. The superiority of the Z C method was demonstrated for the n-γ discrimination method alone, as well as, for the simultaneous separation by the pulse shape discrimination and the time-of-flight methods down to about 30 keV recoil electron energy. The digital charge comparison method fails for a large dynamic range of energy and its separation is weakly improved by time-of-flight method for low energies.