Backgrounds
Hemodynamics plays an important role in the natural history of the process of rupture and recurrence of intracranial aneurysms. This study aimed to investigate the role of hemodynamics for recurrence in a vertebral artery dissecting aneurysm (VADA).
Methods
A patient with a ruptured VADA firstly treated by low-profile visualized intraluminal support (LVIS)-assisted coiling, and was implanted with a Pipeline Embolization Device (PED) after aneurysm recurrence. Finite element analysis and computational fluid dynamics simulations were conducted in 6 serial imaging procedures, and the calculated hemodynamics was correlated with aneurysm recurrence.
Results
Wall shear stress (WSS) was not effectively suppressed, resulting in aneurysm recurrence with initial entry tear to occur above the protuberance after 7 months of LVIS stent-assisted coiling. With the implantation of PED, WSS, inflow stream and velocity at the aneurysm neck significantly decreased. During the 3-month follow-up after PED deployment, there was significant shrinkage of the sac and the blood flow in the sac was reduced considerably. The 27-month follow-up after PED deployment indicated the aneurysm was stable.
Conclusions
The present case study suggests that insufficient suppression of high WSS and high inflow velocity at the neck of the parent artery, especially near the posterior inferior cerebellar artery, might be associated with aneurysm recurrence.