Constraining maximum event magnitude during injection-triggered seismicity

Z Li, D Elsworth, C Wang - Nature communications, 2021 - nature.com
Nature communications, 2021nature.com
Understanding mechanisms controlling fluid injection-triggered seismicity is key in defining
strategies to ameliorate it. Recent triggered events (eg Pohang, Mw 5.5) have exceeded
predictions of average energy release by a factor of> 1000x, necessitating robust
methodologies to both define critical antecedent conditions and to thereby constrain
anticipated event size. We define maximum event magnitudes resulting from triggering as a
function of pre-existing critical stresses and fluid injection volume. Fluid injection …
Abstract
Understanding mechanisms controlling fluid injection-triggered seismicity is key in defining strategies to ameliorate it. Recent triggered events (e.g. Pohang, Mw 5.5) have exceeded predictions of average energy release by a factor of >1000x, necessitating robust methodologies to both define critical antecedent conditions and to thereby constrain anticipated event size. We define maximum event magnitudes resulting from triggering as a function of pre-existing critical stresses and fluid injection volume. Fluid injection experiments on prestressed laboratory faults confirm these estimates of triggered moment magnitudes for varied boundary conditions and injection rates. In addition, observed ratios of shear slip to dilation rates on individual faults signal triggering and may serve as a measurable proxy for impending rupture. This new framework provides a robust method of constraining maximum event size for preloaded faults and unifies prior laboratory and field observations that span sixteen decades in injection volume and four decades in length scale.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果