Construction, Extension and Coupling of Frames on Finite Dimensional Pontryagin Space

G Escobar, K Esmeral, O Ferrer - arXiv preprint arXiv:1408.6584, 2014 - arxiv.org
G Escobar, K Esmeral, O Ferrer
arXiv preprint arXiv:1408.6584, 2014arxiv.org
In this paper we extend to finite-dimensional Pontryagin spaces the methods used in\cite
{CasazzaLeon, Deguang} to build frames from an adjoint and positive operator. It is proved
that any frame in finite dimensional Pontryagin space $\mathcal {K} $ is $ J $-orthogonal
projection of a frame for a space $\mathcal {H} $ such that $\mathcal {K}\subset\mathcal {H}
$. Furthermore, given $\{k_ {n}\} _ {n= 1}^{m} $ and $\{x_ {n}\} _ {n= 1}^{k} $ frames for
$\mathcal {K} $ and $\mathcal {H} $ respectively, we build a finite-dimensional Pontryagin …
In this paper we extend to finite-dimensional Pontryagin spaces the methods used in \cite{CasazzaLeon,Deguang} to build frames from an adjoint and positive operator. It is proved that any frame in finite dimensional Pontryagin space is -orthogonal projection of a frame for a space such that . Furthermore, given and frames for and respectively, we build a finite-dimensional Pontryagin space and a frame for such that and .
arxiv.org
以上显示的是最相近的搜索结果。 查看全部搜索结果