{CasazzaLeon, Deguang} to build frames from an adjoint and positive operator. It is proved
that any frame in finite dimensional Pontryagin space $\mathcal {K} $ is $ J $-orthogonal
projection of a frame for a space $\mathcal {H} $ such that $\mathcal {K}\subset\mathcal {H}
$. Furthermore, given $\{k_ {n}\} _ {n= 1}^{m} $ and $\{x_ {n}\} _ {n= 1}^{k} $ frames for
$\mathcal {K} $ and $\mathcal {H} $ respectively, we build a finite-dimensional Pontryagin …