Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4

S Lim, Q Yu, SM Gottlieb, CW Chang… - Proceedings of the …, 2018 - National Acad Sciences
S Lim, Q Yu, SM Gottlieb, CW Chang, NC Rockwell, SS Martin, D Madsen, JC Lagarias
Proceedings of the National Academy of Sciences, 2018National Acad Sciences
Phytochrome photoreceptors control plant growth, development, and the shade avoidance
response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes
(CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism
and behavior in response to light. Photoreceptors in both families reversibly photoconvert
between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores.
Spectroscopic and biochemical studies have demonstrated heterogeneity in both …
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme. In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
National Acad Sciences
以上显示的是最相近的搜索结果。 查看全部搜索结果