Crystallization of strongly interacting photons in a nonlinear optical fibre

DE Chang, V Gritsev, G Morigi, V Vuletić, MD Lukin… - Nature physics, 2008 - nature.com
DE Chang, V Gritsev, G Morigi, V Vuletić, MD Lukin, EA Demler
Nature physics, 2008nature.com
Understanding strongly correlated quantum systems is a central problem in many areas of
physics. The collective behaviour of interacting particles gives rise to diverse fundamental
phenomena such as confinement in quantum chromodynamics, electron fractionalization in
the quantum Hall regime and phase transitions in unconventional superconductors and
quantum magnets. Such systems typically involve massive particles, but optical photons can
also interact with one another in a nonlinear medium. In practice, however, such interactions …
Abstract
Understanding strongly correlated quantum systems is a central problem in many areas of physics. The collective behaviour of interacting particles gives rise to diverse fundamental phenomena such as confinement in quantum chromodynamics, electron fractionalization in the quantum Hall regime and phase transitions in unconventional superconductors and quantum magnets. Such systems typically involve massive particles, but optical photons can also interact with one another in a nonlinear medium. In practice, however, such interactions are often very weak. Here we describe a technique that enables the creation of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field confinement and coherent photon trapping techniques. The confinement enables the generation of large, tunable optical nonlinearities via the interaction of photons with a nearby cold atomic gas. In its extreme, we show that a quantum light field can undergo fermionization in such one-dimensional media, which can be probed via standard photon correlation measurements.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果