Deep-LearningModellingofDynamicPanelDataforAfricanEconomicGrowth

NO Adeboye, NO Alabi - Journal of …, 2022 - eprints.federalpolyilaro.edu.ng
Journal of Econometrics and Statistics, 2022eprints.federalpolyilaro.edu.ng
NigeriaApril28, 2022Whenmodellingphenomenarelatingtot…, dynamicpanelmodelshaveproventobeausef…
. Previousstudieshavemodelleddynamicpan…, InstrumentalvariablesandMaximumlikelihoo…
. Thisstudyhoweverfocusesonmodellingdyna…-learningtechniques. Tothisend, twomacro-
economicvariablesofPurchasingPowerParity (PPP) andGrossNationalIncome (GNI)
wereemployedtomodeltheeco-nomicgrowthoftwentyAfricancountries. Dynamicpanelinformationaboutthesecountri…
. DeeplearningtechniquesofLongTermShort… (LSTM), BidirectionalLongShortTermMemory …
NigeriaApril28,2022Whenmodellingphenomenarelatingtotheeconomy,dynamicpanelmodelshaveproventobeausefultool.Previousstudieshavemodelleddynamicpaneldatausingconventionalmethodsofgeneralizedmethodofmoment,InstrumentalvariablesandMaximumlikelihoodestimatorsamongothers.Thisstudyhoweverfocusesonmodellingdynamicpaneldatausingmoderndayapproachesofdeep-learningtechniques.Tothisend,twomacro-economicvariablesofPurchasingPowerParity(PPP)andGrossNationalIncome(GNI)wereemployedtomodeltheeco-nomicgrowthoftwentyAfricancountries.DynamicpanelinformationaboutthesecountriesweresourcedfromUNESCOdatabasebetween1990and2019.DeeplearningtechniquesofLongTermShortmemory(LSTM),BidirectionalLongShortTermMemory(Bi-LSTM)andGatedRecurrentUnits(GRU)wereemployedinthemodellingprocess,andthefindingsrevealedthatLSTMhavingtheleastvaluesoftheadoptedeval-uationmetrics,isthebestandmostsuitabledeeplearningmethodformodellingdynamicpaneldata.Forecastswerealsomadeforthenext20yearswiththetechniques,andtheresultsshowthatLSTMgivesthebestpredictingaccuracywithitslowestMeanAbsoluteError(MAE),MAPE,MSEandRMSE.
eprints.federalpolyilaro.edu.ng