Delayed Abscission and Shorter Internodes Correlate with a Reduction in the Ethylene Receptor LeETR1 Transcript in Transgenic Tomato

CA Whitelaw, NN Lyssenko, L Chen, D Zhou… - Plant …, 2002 - academic.oup.com
CA Whitelaw, NN Lyssenko, L Chen, D Zhou, AK Mattoo, ML Tucker
Plant Physiology, 2002academic.oup.com
Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a
construct containing the antisense sequence for the receiver domain and 3′-untranslated
portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced
cauliflower mosaic virus 35S promoter resulted in some expected and unexpected
phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently
observed phenotypes in the transgenic lines were delayed abscission and reduced plant …
Abstract
Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3′-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene. Two independent lines with a single copy of the transgene and reducedLeETR1 transcript accumulation were selected for detailed phenotypic analysis of second generation (R1) plants. Delayed abscission, shorter internode length, and reduced auxin movement all correlated with the presence of the transgene and the degree of reducedLeETR1 transcript accumulation. No significant differences were noted for fruit coloration or fruit softening on R1 plants and all seedlings from R1 and R2 seed displayed a normal triple response. LeETR2 transcript accumulation was only slightly reduced in the R1 plants compared with azygous plants, andLeETR3 (NR) transcript levels appeared to be unaffected by the transgene. We propose that ethylene signal transduction occurs through parallel paths that partially intersect to regulate shared ethylene responses.
Oxford University Press
以上显示的是最相近的搜索结果。 查看全部搜索结果