The experiments reported herein probe the visual cortical mechanisms that control near–far percepts in response to two-dimensional stimuli. Figural contrast is found to be a principal factor for the emergence of percepts of near versus far in pictorial stimuli, especially when stimulus duration is brief. Pictorial factors such as interposition (Experiment 1) and partial occlusion Experiments 2 and 3) may cooperate, as generally predicted by cue combination models, or compete with contrast factors in the manner predicted by the FACADE model. In particular, if the geometrical con guration of an image favors activation of cortical bipole grouping cells, as at the top of a T-junction, then this advantage can cooperate with the contrast of the con guration to facilitate a near–far percept at a lower contrast than at an X-junction. Varying the exposure duration of the stimuli shows that the more balanced bipole competition in the X-junction case takes longer exposure times to resolve than the bipole competition in the T-junction case (Experiment 3).