La detección de placas vehiculares empleando técnicas de aprendizaje automático mejora los procesos de rastreo, seguimiento y seguridad. Se presenta el desarrollo de un modelo de clasificador en cascada para la detección de placas vehiculares, utilizando las herramientas de Python, OpenCV y Cascade Trainer GUI, basadas en código abierto. Las imágenes utilizadas para el procesamiento fueron capturadas mediante una cámara para Raspberry Pi conectada a la placa embebida, en diversos puntos de la zona céntrica de la ciudad fronteriza de Cúcuta, Colombia; posteriormente enviadas a una computadora personal y redireccionadas mediante transformaciones geométricas; y para garantizar el alto rendimiento del sistema de clasificación, se aplican procesos de aumentado de datos, pasando de 245 a 1867 imágenes para el entrenamiento del detector en cascada. El modelo de clasificación tardó 17.4 minutos en crearse, y se probó con imágenes y videos en ambientes reales de la ciudad de Cúcuta, logrando la detección de placas vehiculares de matrículas colombianas y venezolanas con una efectividad del 90.26%.