Due to the scarcity of water around the world especially in arid and semi-arid regions, accurate determination of crop water requirement is essential for proper irrigation planning and management. One of the common methods for estimating crop evapotranspiration is the use of reference evapotranspiration and crop coefficient (Kc) (or the FAO-56 Kc-ETo approach). Different climatic conditions, plant variety, and differences in crops, soils and irrigation management practices result in variations in crop coefficient for the same crop between the locations, therefore locally developed Kc values are necessary for more accurate estimation of crop evapotranspiration. The aims of this research were to estimate silage maize crop coefficient using water balance method under pulsed drip irrigation system during two growing seasons (spring and summer) and to develop an equation to calculate silage maize crop coefficient based on growing-degree-days in Varamin. Silage maize actual evapotranspiration based on water balance method was 465 and 373 mm for spring and summer growing seasons respectively. Silage maize crop coefficient for initial, mid and late growth stages of spring and summer growing seasons were calculated 0.24-0.27, 1.28-1.3 and 0.8-0.88 respectively. The results showed that using silage maize crop coefficient proposed by FAO-56 caused 8% underestimation in crop evapotranspiration. Significant difference ( ) was found between and , while using the equation presented in this study estimates silage maize evapotranspiration reasonably well, with the mean absolute error (MAE) of 0.53 mm/day, the root mean square error (RMSE) of 0.7 mm/day and the agreement index (d) of 0.98. Therefore, using developed regionally based and growth-stage-specific Kc helps in irrigation management and provides precise water applications for this region.