[HTML][HTML] Disease detection of apple leaf with combination of color segmentation and modified DWT

S Hasan, S Jahan, MI Islam - Journal of King Saud University-Computer …, 2022 - Elsevier
S Hasan, S Jahan, MI Islam
Journal of King Saud University-Computer and Information Sciences, 2022Elsevier
In this paper, we proposed a machine learning and computer vision-based automated apple
disease detection and recognition system based on leaf symptoms. The proposed method is
composed of three parts: diseased region segmentation, feature extraction, and
classification. We have segmented the infected portion of the leaf using L* a* b* space-
based color segmentation method. Here, average color markers in a* b* space and the
nearest neighbor method have been used for classifying each pixel into either healthy …
Abstract
In this paper, we proposed a machine learning and computer vision-based automated apple disease detection and recognition system based on leaf symptoms. The proposed method is composed of three parts: diseased region segmentation, feature extraction, and classification. We have segmented the infected portion of the leaf using L*a*b* space-based color segmentation method. Here, average color markers in a*b* space and the nearest neighbor method have been used for classifying each pixel into either healthy, infected, or background regions. We have extracted two types of features: one is the proposed DWT feature and another is L*a*b* space-based color histogram features. Horizontal feature fusion is performed to create the final feature vector. The feature vectors have been classified using several classifiers keeping Random Forrest as the base classifier. In this paper, the experiment is made on Plant Village dataset, where image of Apple Scab, Black Rot, and Cedar Apple Rust disease are taken for both training and testing our model. The fusion of proposed DWT and color histogram features is a novel approach in detecting and recognizing apple leaf disease, which got an accuracy of 98.63%.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果