Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning method

T Li, W Bai, Q Liu, Y Long… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
T Li, W Bai, Q Liu, Y Long, CLP Chen
IEEE Transactions on Neural Networks and Learning Systems, 2021ieeexplore.ieee.org
This article investigates the model-free fault-tolerant containment control problem for
multiagent systems (MASs) with time-varying actuator faults. Depending on the relative state
information of neighbors, a distributed containment control method based on reinforcement
learning (RL) is adopted to achieve containment control objective without prior knowledge
on the system dynamics. First, based on the information of agent itself and its neighbors, a
containment error system is established. Then, the optimal containment control problem is …
This article investigates the model-free fault-tolerant containment control problem for multiagent systems (MASs) with time-varying actuator faults. Depending on the relative state information of neighbors, a distributed containment control method based on reinforcement learning (RL) is adopted to achieve containment control objective without prior knowledge on the system dynamics. First, based on the information of agent itself and its neighbors, a containment error system is established. Then, the optimal containment control problem is transformed into an optimal regulation problem for the containment error system. Furthermore, the RL-based policy iteration method is employed to deal with the corresponding optimal regulation problem, and the nominal controller is proposed for the original fault-free system. Based on the nominal controller, a fault-tolerant controller is further developed to compensate for the influence of actuator faults on MAS. Meanwhile, the uniform boundedness of the containment errors can be guaranteed by using the presented control scheme. Finally, numerical simulations are given to show the effectiveness and advantages of the proposed method.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果