Effect of swine-waste bio-char on the water absorption characteristics of cement pastes

AN Ofori-Boadu, RY Abrokwah… - International Journal of …, 2018 - emerald.com
International Journal of Building Pathology and Adaptation, 2018emerald.com
Purpose The purpose of this paper is to investigate the effect of an admixture, Swine-waste
Bio-char (SB), on the water absorption characteristics of cement pastes.
Design/methodology/approach The effect of SB percentages, heat treatment temperatures,
water/binder ratios, and age on the water absorption percentages (WAPs) of SB modified
cement pastes were investigated using scanning electron microscopy-energy dispersive
spectra, FTIR, Brunauer-Emmett-Teller, and laboratory experiments. Findings The WAPs of …
Purpose
The purpose of this paper is to investigate the effect of an admixture, Swine-waste Bio-char (SB), on the water absorption characteristics of cement pastes.
Design/methodology/approach
The effect of SB percentages, heat treatment temperatures, water/binder ratios, and age on the water absorption percentages (WAPs) of SB modified cement pastes were investigated using scanning electron microscopy-energy dispersive spectra, FTIR, Brunauer-Emmett-Teller, and laboratory experiments.
Findings
The WAPs of cement pastes with SBs produced at the low treatment temperature (LTT) of 340°C and 400°C were significantly lower (p<0.01) than pastes with SBs produced at the high treatment temperature (HTT) of 600°C and 800°C. This was attributed primarily to the more dominant presence of hydrophobic alkyl surface groups from non-volatilized matter in LTT-SBs. This had also resulted in lower surface areas and pore volumes in LTT-SBs. As a result of the volatilization of these labile hydrophobic groups at HTT, HTT-SBs were more hydrophilic and had higher surface areas and pore volumes. Consequently, HTT-SB pastes had higher WAPs and no significant differences (p<0.05) existed between HTT-SB pastes and control pastes. Also, low water/binder ratios and aging reduced water absorption of SB modified cement pastes.
Practical implications
LTT-SBs reduce water absorption and could reduce concrete deterioration; and as such, associated building repair, maintenance, and adaptation costs. Notably, reductions in concrete water absorption will extend the service life of concrete buildings and infrastructures, particularly in unfavorable environmental conditions. The observed benefits are tempered by the current lack of information on the effects of SB on compression strength, workability, and other durability properties.
Social implications
SB utilization in concrete buildings will enhance swine-waste disposal and reduce negative environmental impacts on swine farming communities; consequently, improving their quality of life.
Originality/value
Current bio-char research is focused on plant-derived bio-char toward soil remediation and contaminant removal, with very limited applications in concrete. This research advances knowledge for developing livestock-derived bio-char, as a PCRM, toward more sustainable and durable concrete structures.
Emerald Insight
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References