Effects of bed forms and large protruding grains on near‐bed flow hydraulics in low relative submergence conditions

A Monsalve, EM Yager… - Journal of Geophysical …, 2017 - Wiley Online Library
Journal of Geophysical Research: Earth Surface, 2017Wiley Online Library
In mountain rivers, bed forms, large relatively immobile grains, and bed texture and
topographic variability can significantly alter local and reach‐averaged flow characteristics.
The low relative submergence of large immobile grains causes highly three‐dimensional
flow fields that may not be represented by traditional shear stress, flow velocity, and
turbulence intensity equations. To explore the influence of large protruding grains and bed
forms on flow properties, we conducted a set of experiments in which we varied the relative …
Abstract
In mountain rivers, bed forms, large relatively immobile grains, and bed texture and topographic variability can significantly alter local and reach‐averaged flow characteristics. The low relative submergence of large immobile grains causes highly three‐dimensional flow fields that may not be represented by traditional shear stress, flow velocity, and turbulence intensity equations. To explore the influence of large protruding grains and bed forms on flow properties, we conducted a set of experiments in which we varied the relative submergence while holding the sediment transport capacity and upstream sediment supply constant. Flow and bed measurements were conducted at the beginning and end of each experiment to account for the absence or presence of bed forms, respectively. Detailed information on the flow was obtained by combining our measurements with a 3‐D numerical model. Commonly used velocity profile equations only performed well at the reach scale when shallow flow effects and the roughness length of the relatively mobile sediment were considered. However, at the local scale large deviations from these profiles were observed and simple methods to estimate the spatial distribution of near‐bed shear stresses are likely to be inaccurate. Zones of high turbulent kinetic energy occurred near the water surface and were largely controlled by the immobile grains and plunging flow. The reach‐averaged shear stress did not correlate to depth or slope, as commonly assumed, but instead was controlled by the relative boulder submergence and degree of plunging flow. For accurate flow predictions in mountain rivers, the effects of bed forms and large boulders must be considered.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果