Effects of principal stress rotation on resilient behavior in rail track foundations

PJ Gräbe, CRI Clayton - Journal of geotechnical and …, 2014 - ascelibrary.org
Journal of geotechnical and geoenvironmental Engineering, 2014ascelibrary.org
The design of a railway track substructure requires a realistic understanding of the resilient
behavior of the underlying track foundation materials, namely, the subballast and subgrade
layers. Currently, the best available method of characterizing the resilient behavior of track
foundation materials is through the execution of cyclic triaxial tests, although these do not
have the ability to impose principal stress rotation (PSR) on test specimens. A previous
paper by the authors demonstrated that PSR increases the rate of permanent strain …
Abstract
The design of a railway track substructure requires a realistic understanding of the resilient behavior of the underlying track foundation materials, namely, the subballast and subgrade layers. Currently, the best available method of characterizing the resilient behavior of track foundation materials is through the execution of cyclic triaxial tests, although these do not have the ability to impose principal stress rotation (PSR) on test specimens. A previous paper by the authors demonstrated that PSR increases the rate of permanent strain development. This paper reports on the effects of PSR on the resilient behavior of track foundation materials. Four different reconstituted soils selected to represent typical track foundation materials were subjected to undrained cyclic and torsional shear tests in a hollow-cylinder apparatus. It was established that PSR reduces the resilient modulus of the materials compared with cyclic loading without PSR. The effects of PSR as a function of clay content, overconsolidation ratio (OCR), and consolidation regime (isotropic or anisotropic) were also investigated.
ASCE Library
以上显示的是最相近的搜索结果。 查看全部搜索结果