Efficient Euclidean projections in linear time

J Liu, J Ye - Proceedings of the 26th annual international …, 2009 - dl.acm.org
Proceedings of the 26th annual international conference on machine learning, 2009dl.acm.org
We consider the problem of computing the Euclidean projection of a vector of length n onto a
closed convex set including the l 1 ball and the specialized polyhedra employed in (Shalev-
Shwartz & Singer, 2006). These problems have played building block roles in solving
several l 1-norm based sparse learning problems. Existing methods have a worst-case time
complexity of O (n log n). In this paper, we propose to cast both Euclidean projections as root
finding problems associated with specific auxiliary functions, which can be solved in linear …
We consider the problem of computing the Euclidean projection of a vector of length n onto a closed convex set including the l1 ball and the specialized polyhedra employed in (Shalev-Shwartz & Singer, 2006). These problems have played building block roles in solving several l1-norm based sparse learning problems. Existing methods have a worst-case time complexity of O(n log n). In this paper, we propose to cast both Euclidean projections as root finding problems associated with specific auxiliary functions, which can be solved in linear time via bisection. We further make use of the special structure of the auxiliary functions, and propose an improved bisection algorithm. Empirical studies demonstrate that the proposed algorithms are much more efficient than the competing ones for computing the projections.
ACM Digital Library
以上显示的是最相近的搜索结果。 查看全部搜索结果