Eine zur parallelogrammgleichung äquivalente ungleichung

A Gilányi - Aequationes Mathematicae, 2001 - Springer
Aequationes Mathematicae, 2001Springer
In this paper it is proved that, for a function\(f: G\to E\) mapping from an abelian group G
divisible by 2 into an inner product space E, the functional inequality¶¶\(\Vert2f (x)+ 2f (y)-f
(xy^{-1})\Vert\leq\Vert f (xy)\Vert\\\(x, y\in G)\)¶ implies the parallelogram equation¶\(f (xy)+ f
(xy^{-1})-2f (x)-2f (y)= 0\\\(x, y\in G)\).
Summary
In this paper it is proved that, for a function mapping from an abelian group G divisible by 2 into an inner product space E, the functional inequality¶¶\(\Vert2f (x)+ 2f (y)-f (xy^{-1})\Vert\leq\Vert f (xy)\Vert\\\(x, y\in G)\)¶ implies the parallelogram equation¶\(f (xy)+ f (xy^{-1})-2f (x)-2f (y)= 0\\\(x, y\in G)\).
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References