Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt–Ni–Co alloy nanocatalysts

RM Arán-Ais, F Dionigi, T Merzdorf, M Gocyla… - Nano …, 2015 - ACS Publications
RM Arán-Ais, F Dionigi, T Merzdorf, M Gocyla, M Heggen, RE Dunin-Borkowski, M Gliech…
Nano letters, 2015ACS Publications
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity,
selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our
synthetic control over particle size, composition, and shape is limited requiring trial and
error. Deeper atomic-scale insight in the particle formation process would enable more
rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo
nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We …
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果