Conventional lateral flow test strip (LFTS) sensors are insufficiently accurate and reliable due to their single-target detection with limited sample information in a single test. The increasing demand for the simultaneous determination of multiple analytes has recently been accelerating the rapid development of high-throughput and multiplexed LFTS sensing technologies. In this contribution, we systematically summarize the recent achievements on the design, development, and application of multiplexed LFTS sensors for improved rapid on-site diagnostics. The discussion focuses on emerging design strategies to increase multiplexing capacity for enhancing analytical efficiency and precision. As a proof-of-concept, several typical examples are presented. The advantages and disadvantages of such approaches are critically analyzed. Finally, we briefly discuss the current challenges and future perspectives.