Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation

C Hainzl, M Lewin, É Séré - Communications in mathematical physics, 2005 - Springer
Communications in mathematical physics, 2005Springer
According to Dirac's ideas, the vacuum consists of infinitely many virtual electrons which
completely fill up the negative part of the spectrum of the free Dirac operator D 0. In the
presence of an external field, these virtual particles react and the vacuum becomes
polarized. In this paper, following Chaix and Iracane (J. Phys. B 22, 3791–3814 (1989)), we
consider the Bogoliubov-Dirac-Fock model, which is derived from no-photon QED. The
corresponding BDF-energy takes the polarization of the vacuum into account and is …
Abstract
According to Dirac’s ideas, the vacuum consists of infinitely many virtual electrons which completely fill up the negative part of the spectrum of the free Dirac operator D0. In the presence of an external field, these virtual particles react and the vacuum becomes polarized. In this paper, following Chaix and Iracane (J. Phys. B 22, 3791–3814 (1989)), we consider the Bogoliubov-Dirac-Fock model, which is derived from no-photon QED. The corresponding BDF-energy takes the polarization of the vacuum into account and is bounded from below. A BDF-stable vacuum is defined to be a minimizer of this energy. If it exists, such a minimizer is the solution of a self-consistent equation. We show the existence of a unique minimizer of the BDF-energy in the presence of an external electrostatic field, by means of a fixed-point approach. This minimizer is interpreted as the polarized vacuum.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果