Experimental study of the internal flow structures inside a fluidic oscillator

BC Bobusch, R Woszidlo, JM Bergada, CN Nayeri… - Experiments in …, 2013 - Springer
Experiments in fluids, 2013Springer
The internal flow characteristics of a fluidic oscillator were investigated experimentally.
Particle image velocimetry and time-resolved pressure measurements were employed in
water to visualize and quantify the internal flow patterns. The method of proper orthogonal
decomposition was applied to random flow field snap shots for phase reconstruction of one
oscillation cycle. The resulting phase-averaged information provides detailed insight into the
oscillation mechanism as well as into the interaction between the main chamber of the …
Abstract
The internal flow characteristics of a fluidic oscillator were investigated experimentally. Particle image velocimetry and time-resolved pressure measurements were employed in water to visualize and quantify the internal flow patterns. The method of proper orthogonal decomposition was applied to random flow field snap shots for phase reconstruction of one oscillation cycle. The resulting phase-averaged information provides detailed insight into the oscillation mechanism as well as into the interaction between the main chamber of the oscillator and its feedback channels. A growing recirculation bubble between the main jet and the attachment wall is identified as an underlying mechanism that causes the main jet to oscillate. The flow field measurements are complemented by time-resolved pressure measurements at various internal locations which yield additional comprehension of the switching behavior and accompanying timescales. Geometrical features, in particular at the inlet and outlet of the mixing chamber, are found to have a crucial impact on important flow characteristics such as oscillation frequency and jet deflection.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果