Fast machine-learning online optimization of ultra-cold-atom experiments

PB Wigley, PJ Everitt, A van den Hengel, JW Bastian… - Scientific reports, 2016 - nature.com
PB Wigley, PJ Everitt, A van den Hengel, JW Bastian, MA Sooriyabandara, GD McDonald
Scientific reports, 2016nature.com
We apply an online optimization process based on machine learning to the production of
Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation
ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other
loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled
scientific experimentation and observations our 'learner'discovers an optimal evaporation
ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process …
Abstract
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果