Geological lineaments are the earth’s linear features indicating significant tectonic units in the crust associated with the formation of minerals, active faults, groundwater controls, earthquakes, and geomorphology. This study aims to provide a systematic review of the state-of-the-art remote sensing techniques and data sets employed for geological lineament analysis. The critical challenges of this approach and the diverse data verification and validation techniques will be presented. Thus, this review spanned academic articles published since 1975, including expert reports and theses. Landsat series, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Sentinel 2 are the prevalent optical remote sensing data widely used for lineament detection. Moreover, Shuttle Radar Topography Mission (SRTM) derived Digital Elevation Model (DEM), Synthetic-aperture radar (SAR), Interferometric synthetic aperture radar (InSAR), and Sentinel 1 are the typical radar remotely sensed data which are widely used for the detection of geological lineaments. The geological lineaments acquired via GIS techniques are not consistent even though a variety of manual, semi-automated, and automated techniques are applied. Therefore, a single method may not provide an accurate lineament distribution and may include artifacts requiring integration of multiple algorithms, e.g., manual and automated algorithms.