FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation

X Han, H Zhu, P Yu, Z Wang, Y Yao, Z Liu… - arXiv preprint arXiv …, 2018 - arxiv.org
arXiv preprint arXiv:1810.10147, 2018arxiv.org
We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000
sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The
relation of each sentence is first recognized by distant supervision methods, and then filtered
by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for
relation classification and conduct a thorough evaluation of these methods. Empirical results
show that even the most competitive few-shot learning models struggle on this task …
We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.
arxiv.org
以上显示的是最相近的搜索结果。 查看全部搜索结果