Synthetic aperture radar (SAR) remote sensing configurations are able to provide continuous measurements on global scales sensitive to the vertical structure of forests with a high spatial and temporal resolution. Furthermore, the development of tomographic SAR techniques allows the reconstruction of the three-dimensional (3-D) radar reflectivity opening the door for 3-D forest monitoring. However, the link between 3-D radar reflectivity and 3-D forest structure is not yet established. In this sense, this paper introduced a framework that allows a qualitative and quantitative interpretation of physical forest structure from tomographic SAR data at L-band. For this, forest structure is parameterized into a set of a horizontal and a vertical structure index. From inventory data, both indices can be derived from the spatial distribution and the dimensions of the trees. Similarly, two structure indices are derived from the 3-D spatial distribution of the local maxima of the reconstructed 3-D radar reflectivity profiles at L-band. The proposed methodology is tested by means of experimental tomographic L-band data acquired over the temperate forest site of Traunstein in Germany. The obtained horizontal and vertical structure indices are validated against the corresponding estimates obtained from inventory measurements and against the same indices derived from the vertical profiles of airborne Lidar data. The high correlation between the forest structure indices obtained from these three different data sources (expressed by correlation coefficients between 0.75 and 0.87) indicates the potential of the proposed framework.