Frames and stable bases for shift-invariant subspaces of L2 (ℝd)

A Ron, Z Shen - Canadian Journal of Mathematics, 1995 - cambridge.org
Canadian Journal of Mathematics, 1995cambridge.org
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator
Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition,
ran T is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a
stable basis (also known as a Riesz basis). This paper considers the above three properties
for subspaces H of L2 (ℝd), and for sets X of the form with Φ either a singleton, a finite set,
or, more generally, a countable set. The analysis is performed on the Fourier domain, where …
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition, ran T is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis (also known as a Riesz basis). This paper considers the above three properties for subspaces H of L2(ℝd), and for sets X of the form with Φ either a singleton, a finite set, or, more generally, a countable set. The analysis is performed on the Fourier domain, where the two operators TT* and T* T are decomposed into a collection of simpler "fiber" operators. The main theme of the entire analysis is the characterization of each of the above three properties in terms of the analogous property of these simpler operators.
Cambridge University Press
以上显示的是最相近的搜索结果。 查看全部搜索结果