We introduce a novel large-scale scene reconstruction benchmark that utilizes newly developed 3D representation approaches: Gaussian Splatting and Neural Radiance Fields, on our expansive GauU-Scene V2 dataset. GauU-Scene V2 encompasses over 6.5 square kilometers and features a comprehensive RGB dataset coupled with LiDAR ground truth. This dataset offers a unique blend of urban and academic environments for advanced spatial analysis, covering more than 6.5 km2. We also provide detailed supplementary information on data collection protocols. Furthermore, we present an easy-to-follow pipeline to align the COLMAP sparse point cloud with the detailed LiDAR dataset. Our evaluation of U-Scene, which includes a detailed analysis across various novel viewpoints using image-based metrics such as SSIM, LPIPS, and PSNR, shows contradictory results when applying geometric-based metrics, such as Chamfer distance. This leads to doubts about the reliability of current image-based measurement matrices and geometric extraction methods on Gaussian Splatting. We also make the dataset available on the following anonymous project page