Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta

FMM Bento, RN Marques, FB Campana… - Pest management …, 2020 - Wiley Online Library
Pest management science, 2020Wiley Online Library
BACKGROUND RNA interference (RNAi) has been evaluated in several insect pests as a
novel strategy to be included in integrated pest management. Lepidopterans are recognized
to be recalcitrant to gene silencing by RNAi. As such, double‐stranded RNA (dsRNA)
delivery needs to be adjusted to assure its stability until it reaches the target gene transcript
for silencing. Gene silencing by RNAi offers the potential to be used in the control of Tuta
absoluta (Meyrick), one of the main insect pests of tomato (Solanum lycopersicum) …
BACKGROUND
RNA interference (RNAi) has been evaluated in several insect pests as a novel strategy to be included in integrated pest management. Lepidopterans are recognized to be recalcitrant to gene silencing by RNAi. As such, double‐stranded RNA (dsRNA) delivery needs to be adjusted to assure its stability until it reaches the target gene transcript for silencing. Gene silencing by RNAi offers the potential to be used in the control of Tuta absoluta (Meyrick), one of the main insect pests of tomato (Solanum lycopersicum) worldwide. Here, we tested the delivery of dsRNA expressed in Escherichia coli HT115(DE3) and supplied to larvae in an artificial diet by screening target genes for silencing. We tested six target genes: juvenile hormone inducible protein (JHP); juvenile hormone epoxide hydrolase protein (JHEH); ecdysteroid 25‐hydroxylase (PHM); chitin synthase A (CHI); carboxylesterase (COE); and arginine kinase (AK).
RESULTS
Based on larval mortality, the duration of the larval stage in days, pupal weight, and the accumulation of the target gene transcript, we demonstrated the efficacy of bacterial dsRNA delivery for the functional effects on larval development. Providing dsRNA targeted to JHP, CHI, COE and AK by bacteria led to a significant decrease in transcript accumulation and an increase in larval mortality.
CONCLUSION
Bacteria expressing dsRNA targeting essential T. absoluta genes supplied in artificial diet are efficient to screen RNAi target‐genes. The oral delivery of dsRNA by bacteria is a novel potential alternative for the control of T. absoluta based on RNAi. © 2019 Society of Chemical Industry
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果