Generating transition states of isomerization reactions with deep learning

L Pattanaik, JB Ingraham, CA Grambow… - Physical Chemistry …, 2020 - pubs.rsc.org
Physical Chemistry Chemical Physics, 2020pubs.rsc.org
Lack of quality data and difficulty generating these data hinder quantitative understanding of
reaction kinetics. Specifically, conventional methods to generate transition state structures
are deficient in speed, accuracy, or scope. We describe a novel method to generate three-
dimensional transition state structures for isomerization reactions using reactant and product
geometries. Our approach relies on a graph neural network to predict the transition state
distance matrix and a least squares optimization to reconstruct the coordinates based on …
Lack of quality data and difficulty generating these data hinder quantitative understanding of reaction kinetics. Specifically, conventional methods to generate transition state structures are deficient in speed, accuracy, or scope. We describe a novel method to generate three-dimensional transition state structures for isomerization reactions using reactant and product geometries. Our approach relies on a graph neural network to predict the transition state distance matrix and a least squares optimization to reconstruct the coordinates based on which entries of the distance matrix the model perceives to be important. We feed the structures generated by our algorithm through a rigorous quantum mechanics workflow to ensure the predicted transition state corresponds to the ground truth reactant and product. In both generating viable geometries and predicting accurate transition states, our method achieves excellent results. We envision workflows like this, which combine neural networks and quantum chemistry calculations, will become the preferred methods for computing chemical reactions.
The Royal Society of Chemistry
以上显示的是最相近的搜索结果。 查看全部搜索结果