Generation of achromatic, uniform-phase, radially polarized beams

T Wakayama, OG Rodríguez-Herrera, JS Tyo… - Optics …, 2014 - opg.optica.org
T Wakayama, OG Rodríguez-Herrera, JS Tyo, Y Otani, M Yonemura, T Yoshizawa
Optics Express, 2014opg.optica.org
Axially symmetric half-wave plates have been used to generate radially polarized beams
that have constant phase in the plane transverse to propagation. However, since the
retardance introduced by these waveplates depends on the wavelength, it is difficult to
generate radially polarized beams achromatically. This paper describes a technique
suitable for the generation of achromatic, radially polarized beams with uniform phase. The
generation system contains, among other optical components, an achromatic, axially …
Axially symmetric half-wave plates have been used to generate radially polarized beams that have constant phase in the plane transverse to propagation. However, since the retardance introduced by these waveplates depends on the wavelength, it is difficult to generate radially polarized beams achromatically. This paper describes a technique suitable for the generation of achromatic, radially polarized beams with uniform phase. The generation system contains, among other optical components, an achromatic, axially symmetric quarter-wave plate based on total internal reflection. For an incident beam with a constant phase distribution, the system generates a beam with an extra geometrical phase term. To generate a beam with the correct phase distribution, it is therefore necessary to have an incident optical vortex with an azimuthally varying phase distribution of the form exp( + iθ). We show theoretically that the phase component of radially polarized beam is canceled out by the phase component of the incident optical vortex, resulting in a radially polarized beam with uniform phase. Additionally, we present an experimental setup able to generate the achromatic, uniform-phase, radially polarized beam and experimental results that confirm that the generated beam has the correct phase distribution.
opg.optica.org
以上显示的是最相近的搜索结果。 查看全部搜索结果