Historic and contemporary data can shed light on a species’ conservation status and work together to address two main goals in conservation biology: (1) identifying species under extinction risk and (2) the forces shaping this process. Museomics is the study of historical DNA acquired from museum specimens that allows researchers to answer myriad questions across many taxa. Museomics is an effective way to understand how populations have been affected by human and climate factors from a historic perspective. Here, our goal is to investigate changes in wild populations of two small carpenter bee species (Ceratina calcarata and C. dupla) across a 50-year time span. We sampled museum specimens and recent collections to determine their genetic diversity, population structure, effective population size, signatures of selection, and local adaptation. Both species displayed reduced genetic diversity and effective population size through time. We identified signatures of adaptation in both species across human-altered land use and climate change scenarios. We found signatures of selection in genes related to biochemical defense, insecticide, and thermal tolerance, which are consistent with the observed increase in agricultural land use development and rising temperatures over the past 50 years. Our findings suggest that these species are facing population inbreeding, possibly attributable to human land-use change and agrochemicals in their environment. Overall, this study highlights the use of museomics to understand species declines, threats to populations, and targets for remediation.