How Artificial Intelligence Can Enhance the Diagnosis of Cardiac Amyloidosis: A Review of Recent Advances and Challenges

MA Kamel, MT Abbas, CN Kanaan, KA Awad… - Journal of …, 2024 - mdpi.com
MA Kamel, MT Abbas, CN Kanaan, KA Awad, N Baba Ali, IG Scalia, JM Farina, M Pereyra
Journal of Cardiovascular Development and Disease, 2024mdpi.com
Cardiac amyloidosis (CA) is an underdiagnosed form of infiltrative cardiomyopathy caused
by abnormal amyloid fibrils deposited extracellularly in the myocardium and cardiac
structures. There can be high variability in its clinical manifestations, and diagnosing CA
requires expertise and often thorough evaluation; as such, the diagnosis of CA can be
challenging and is often delayed. The application of artificial intelligence (AI) to different
diagnostic modalities is rapidly expanding and transforming cardiovascular medicine …
Cardiac amyloidosis (CA) is an underdiagnosed form of infiltrative cardiomyopathy caused by abnormal amyloid fibrils deposited extracellularly in the myocardium and cardiac structures. There can be high variability in its clinical manifestations, and diagnosing CA requires expertise and often thorough evaluation; as such, the diagnosis of CA can be challenging and is often delayed. The application of artificial intelligence (AI) to different diagnostic modalities is rapidly expanding and transforming cardiovascular medicine. Advanced AI methods such as deep-learning convolutional neural networks (CNNs) may enhance the diagnostic process for CA by identifying patients at higher risk and potentially expediting the diagnosis of CA. In this review, we summarize the current state of AI applications to different diagnostic modalities used for the evaluation of CA, including their diagnostic and prognostic potential, and current challenges and limitations.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果