Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering

P Choudhury, S Kumar, A Singh, A Kumar, N Kaur… - Carbohydrate …, 2018 - Elsevier
Carbohydrate polymers, 2018Elsevier
Patho-physiologies related to skin are diverse in nature such as burns, skin ulcers, atopic
dermatitis, psoriasis etc. which impose severe bio-medical problems and thus enforce
requirement of new and healthy skin prepared through tissues engineering methodologies.
However, fully functional and biodegradable matrix for attachment, growth, proliferation and
differentiation of the relevant cells is not available. In the present study, we introduce a set of
hydrogels synthesized by incorporation of a synthetic monomer (Hydroxyethlmethacryate) …
Abstract
Patho-physiologies related to skin are diverse in nature such as burns, skin ulcers, atopic dermatitis, psoriasis etc. which impose severe bio-medical problems and thus enforce requirement of new and healthy skin prepared through tissues engineering methodologies. However, fully functional and biodegradable matrix for attachment, growth, proliferation and differentiation of the relevant cells is not available. In the present study, we introduce a set of hydrogels synthesized by incorporation of a synthetic monomer (Hydroxyethlmethacryate) with a semi-synthetic polymer backbone (carboxy methyl tamarind, CMT) in different mole ratios. We termed these materials as CMT:HEMA based hydrogels and these were characterized by different physico-chemical techniques, namely by X-Ray Diffraction, SEM and Dynamic Light Scattering. Biocompatibility studies with HaCaT, NIH-3T3 and mouse dermal fibroblasts confirm that this material is biocompatible. MTT assay further confirmed that this material does not have any cytotoxic effects. Assays for mitochondrial functionality such as ATP assay and mitochondrial reactive oxygen (ROS) generation also suggest that this material is safe and does not have any cytotoxicity. Hemolytic assay with red blood cells and acute skin irritation test on SD Rats confirmed that this material is suitable for ex-vivo application in future. We suggest that this hydrogel is suitable for in-vivo applications and may have clinical and commercial importance against skin disorders.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果