Oxidation treatment helps to reduce the polycyclic aromatic hydrocarbon (PAH) load in contaminated soils but it may also have an effect on the soil quality. The impact of permanganate and Fenton oxidation on soil quality is investigated. Soil quality is restricted here to the potential for plant growth. Soil samples were collected from an agricultural field (S1) and a former coking plant (S4). Agricultural soil was spiked with phenanthrene (PHE) and pyrene (PYR) at two concentrations (S2: 700mg PHEkg−1, S3: 700mg PHEkg−1 and 2100mg PYRkg−1). Soils were treated with both oxidation processes, and analyzed for PAHs and a set of agronomic parameters. A plant germination and growth test was run with rye-grass on treated soils. Results showed that both treatments produced the expected reduction of PAH concentration (from 64% to 97%). Besides, a significant loss of organic C and N, and strong changes in available nutrients were observed. Permanganate treatment increased the specific surface area and the cation exchange capacity in relation to manganese dioxide precipitation, and produced a rise in pH. Fenton oxidation decreased soil pH and increased the water retention capacity. Plant growth was negatively affected by permanganate, related to lower soil permeability and aeration. Both treatments had an effect on soil properties but Fenton oxidation appeared to be more compatible with revegetation.