The presence of “free” trimethylaluminum (TMA) in methylalumoxane (MAO) solutions can be highly detrimental to the performance of metallocene and “post-metallocene” olefin polymerization catalysts. The most used strategy to remove “free” TMA is to evaporate MAO solutions to dryness, until a free-flowing white powder (“solid MAO”) is left. This procedure is tedious and potentially hazardous, because in some cases the distillate is a concentrated hydrocarbon solution of TMA. Moreover, “solid MAO” is poorly soluble in common polymerization media, and once in solution it can regenerate TMA to some extent. This communication reports on a facile alternative, which consists in the controlled addition of a sterically hindered phenol, such as 2,6-di-tert-butylphenol, effectively trapping “free” TMA. We show here that 2,6-di-tert-butylphenol/MAO solutions activate equally well the dichloro-precursors of well-known zirconocene and bis(phenoxyimine)Ti catalysts, and that their use in propene polymerization results in a substantially higher productivity, polymer stereoregularity, and/or average molecular mass compared with activation by MAO alone.