In situ self-assembly of nanoparticles into waxberry-like starch microspheres enhanced the mechanical strength, fatigue resistance, and adhesiveness of hydrogels

Y Qin, C Qiu, Y Hu, S Ge, J Wang… - ACS Applied Materials & …, 2020 - ACS Publications
Y Qin, C Qiu, Y Hu, S Ge, J Wang, Z Jin
ACS Applied Materials & Interfaces, 2020ACS Publications
Owing to the diminishing resources and growing awareness of environmental issues,
significant scientific attention has been paid to the development of physical gel materials
using renewable and low-cost natural resources. Inspired by the strengthened mechanism
of double-network and nanocomposite (NC) gels, we report a facile and green method to
realize a mechanically stiff, fatigue-resistant, and adhesive-debranched waxy corn
starch/poly (vinyl alcohol) double-crosslinked NC gel (W-Gel) skeleton material with …
Owing to the diminishing resources and growing awareness of environmental issues, significant scientific attention has been paid to the development of physical gel materials using renewable and low-cost natural resources. Inspired by the strengthened mechanism of double-network and nanocomposite (NC) gels, we report a facile and green method to realize a mechanically stiff, fatigue-resistant, and adhesive-debranched waxy corn starch/poly(vinyl alcohol) double-crosslinked NC gel (W-Gel) skeleton material with dynamic noncovalent bonds. The in situ formation of debranched starch nanoparticles leads to self-assembly into three-dimensional waxberry-like microspheres, which act as physical cross-linkers by embedding themselves within network skeleton structures. The resulting hydrogel exhibited an excellent mechanical behavior, including a good stretchability over 1200% strain, a maximum compressive strength of up to 780.7 ± 27.8 kPa, and the ability to sustain as much weight as 4.6 kg (about 2000 times its own weight). Notably, the recovery efficiency exceeded 93% after the 60th compressive successive loading–unloading cycle at 50% strain. The hydrogel successfully adhered onto soft and hard substrates, such as skins, plastics, gauzes, glasses, and metals, manifesting in long-term, stable, sustained release of epigallocatechin gallate (EGCG). The EGCG-loaded W-Gels exhibited predominant antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Salmonella typhus).
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果