Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception

K Vinken, X Boix, G Kreiman - Science Advances, 2020 - science.org
Science Advances, 2020science.org
Adaptation is a fundamental property of sensory systems that can change subjective
experiences in the context of recent information. Adaptation has been postulated to arise
from recurrent circuit mechanisms or as a consequence of neuronally intrinsic suppression.
However, it is unclear whether intrinsic suppression by itself can account for effects beyond
reduced responses. Here, we test the hypothesis that complex adaptation phenomena can
emerge from intrinsic suppression cascading through a feedforward model of visual …
Adaptation is a fundamental property of sensory systems that can change subjective experiences in the context of recent information. Adaptation has been postulated to arise from recurrent circuit mechanisms or as a consequence of neuronally intrinsic suppression. However, it is unclear whether intrinsic suppression by itself can account for effects beyond reduced responses. Here, we test the hypothesis that complex adaptation phenomena can emerge from intrinsic suppression cascading through a feedforward model of visual processing. A deep convolutional neural network with intrinsic suppression captured neural signatures of adaptation including novelty detection, enhancement, and tuning curve shifts, while producing aftereffects consistent with human perception. When adaptation was trained in a task where repeated input affects recognition performance, an intrinsic mechanism generalized better than a recurrent neural network. Our results demonstrate that feedforward propagation of intrinsic suppression changes the functional state of the network, reproducing key neurophysiological and perceptual properties of adaptation.
AAAS
以上显示的是最相近的搜索结果。 查看全部搜索结果