Interferometric aperture synthesis is presented as an alternative to real aperture measurements of the Earth's brightness temperature from low Earth orbit. The signal-to-noise performance of a single interferometric measurement is considered, and the noise characteristics of the brightness temperature image produced from the interferometer measurements are discussed. The sampling requirements of the measurements and the resulting effects of the noise in the measurements on the image are described. The specific case of the electronically steered thinned array radiometer (ESTAR) currently under construction is examined. The ESTAR prototype is described in detail sufficient to permit a performance evaluation of its spatial and temperature resolution. Critical aspects of an extension of the ESTAR sensor to a larger spaceborne system are considered. Of particular important are the number and placement of antenna elements in the imaging array.< >