The increasing industrial demand for hard materials and their wide range of applications requires significant investigations to improve their machinability. Therefore, the current study addresses cutting forces and surface roughness during hard turning of AISI 52100 steel (59 hardness Rockwell C (HRC)) using ceramic tool. Turning experiments were held out by varying cutting speed, depth of cut, feed rate, and tool nose radius. For so doing, a central composite design (CCD) was adopted including 30 tests. Cutting forces and surface roughness were modeled using response surface methodology (RSM). The effects of each input parameter on output responses were investigated using analysis of variance (ANOVA) and response surface graphics. The findings of this study demonstrated that the force components were significantly influenced by depth of cut, followed by feed rate with a lower degree. Likewise, the negative result of the small undeformed chip thickness on surface roughness was reduced by the employment of large nose radius. Conclusively, a correlation between cutting force behavior and surface roughness was established and confirmed by the three-dimensional topographic maps of the machined surfaces. The RSM was utilized to define the optimal machining parameters.