Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the spiky green horse-chestnut shell was used for the biosorption and removal of acetaminophen from aqueous solution. It was analysed how the parameters, like contact time, pH, mass of biosorbent and temperature, influence the effectiveness of acetaminophen removal from aqueous solutions. The equilibrium was quickly achieved after 10 min (∼60%). The amount of acetaminophen adsorption slightly increased with the increase of the mass of biosorbent, and for example for an aqueous solution containing 10 mg/L of acetaminophen adsorption was increased from 62% to 81%. The promising results obtained at pH ranged between 2 and 9, which shows that the adsorption of acetaminophen did not depend on the pH and it may be a consequence of the predominant microporous sorbent and its surface charge. The result is better correlated to a pseudo-second-order kinetic model of type 2 (r2 = 0.9992) than pseudo-first-order. A sorption mechanism of acetaminophen on biosorbent was also proposed. The sorption of acetaminophen over biosorbent is mainly preceded by hydrophilic interactions between hydroxyl and carbonyl groups in pharmaceutical molecules and hydroxyl and carboxyl groups on the surface of biosorbent.