Joint learning of probabilistic and geometric shaping for coded modulation systems

FA Aoudia, J Hoydis - GLOBECOM 2020-2020 IEEE Global …, 2020 - ieeexplore.ieee.org
GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020ieeexplore.ieee.org
We introduce a trainable coded modulation scheme that enables joint optimization of the bit-
wise mutual information (BMI) through probabilistic shaping, geometric shaping, bit labeling,
and demapping for a specific channel model and for a wide range of signal-to-noise ratios
(SNRs). Compared to probabilistic amplitude shaping (PAS), the proposed approach is not
restricted to symmetric probability distributions, can be optimized for any channel model, and
works with any code rate k/m, m being the number of bits per channel use and k an integer …
We introduce a trainable coded modulation scheme that enables joint optimization of the bit-wise mutual information (BMI) through probabilistic shaping, geometric shaping, bit labeling, and demapping for a specific channel model and for a wide range of signal-to-noise ratios (SNRs). Compared to probabilistic amplitude shaping (PAS), the proposed approach is not restricted to symmetric probability distributions, can be optimized for any channel model, and works with any code rate k/m, m being the number of bits per channel use and k an integer within the range from 1 to m-1. The proposed scheme enables learning of a continuum of constellation geometries and probability distributions determined by the SNR. Additionally, the PAS architecture with Maxwell-Boltzmann (MB) as shaping distribution was extended with a neural network (NN) that controls the MB shaping of a quadrature amplitude modulation (QAM) constellation according to the SNR, enabling learning of a continuum of MB distributions for QAM. Simulations were performed to benchmark the performance of the proposed joint probabilistic and geometric shaping scheme on additive white Gaussian noise (AWGN) and mismatched Rayleigh block fading (RBF) channels.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果