This paper first presents an analysis strategy to meet requirements of a sensing application through trade-offs between the energy consumption (lifetime) and source-to-sink transport delay under reliability constraint wireless sensor networks. A novel data gathering protocol named Broadcasting Combined with Multi-NACK/ACK (BCMN/A) protocol is proposed based on the analysis strategy. The BCMN/A protocol achieves energy and delay efficiency during the data gathering process both in intra-cluster and inter-cluster. In intra-cluster, after each round of TDMA collection, a cluster head broadcasts NACK to indicate nodes which fail to send data in order to prevent nodes that successfully send data from retransmission. The energy for data gathering in intra-cluster is conserved and transport delay is decreased with multi-NACK mechanism. Meanwhile in inter-clusters, multi-ACK is returned whenever a sensor node sends any data packet. Although the number of ACKs to be sent is increased, the number of data packets to be retransmitted is significantly decreased so that consequently it reduces the node energy consumption. The BCMN/A protocol is evaluated by theoretical analysis as well as extensive simulations and these results demonstrate that our proposed protocol jointly optimizes the network lifetime and transport delay under network reliability constraint.