In certain applications involving direction finding, a priori knowledge of a subset of the directions to be estimated is sometimes available. Existing knowledge-aided (KA) methods apply projection and polynomial rooting techniques to exploit this information in order to improve the estimation accuracy of the unknown signal directions. In this paper, a new strategy for incorporating prior knowledge is developed for situations with a low signal-to-noise ratio (SNR) and a limited data record based on the Unitary ESPRIT algorithm. The proposed KA-Unitary ESPRIT algorithm processes an enhanced covariance matrix estimate obtained by applying a shrinkage covariance estimator, which linearly combines the sample covariance matrix and an a priori known covariance matrix in an automatic fashion. Simulations show that the derived algorithm achieves significant performance gains in estimating the unknown sources and additionally provides a high robustness in the case of inaccurate prior knowledge.